Thermochemical Tomography of the Lithosphere from Multi-observable Probabilistic Inversions

CCFS-GEMOC, Macquarie University, Sydney, Australia.

In collaboration with:

Javier Fullea, Yingjie Yang, Nick Rawlinson,

James Connolly, Alan G. Jones, Bill Griffin and Sue O'Reilly

http://eps.mq.edu.au/~jafonso/homepage.htm

CCFS

1) An interesting problem

Shen et al., 2013, JGR

$\circ~$ What is the nature of the heterogeneity "observed" in the mantle?

GEMO

CCFS

1) An interesting problem

- What is the nature of the heterogeneity "observed" in the mantle?
- # Exploration, targeting systems (cf. McCuaig et al., Ore Geol. Rev., 2010)
- # Defining the LAB (cf. Jones et al., Lithos, 2010)
- *#* Geodynamic modeling (buoyancy from tomography models)
- *# Lithospheric modeling and evolution (TopoEurope, crustal production*
- # Dynamic topography (as we learned yesterday!!)
- # Craton stabilization... etc...etc

- - Predictive and more explicative models at regional scales (<~ 1000 x 1000 km) and depths < 600 km.
 - How much can we really extract from high-resolution geophysical datasets in terms of thermal and compositional anomalies?
 - Realistic uncertainties affecting our predictions

We would like to work within an *internally consistent, multi-observable, probabilistic* inverse framework

GEMO

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

2) The main goals...

Why a *probabilistic* formalism?

Because the problem at hand is probabilistic in nature

Why multi-observable?

Different observables provide information on different aspects of the problem

Why internally consistent?

So you cannot tweak parameters as you please to make your model look better!!

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

CCFS

3) Multi-Observable Thermochemical Tomography: why and how?

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Multi-Observable Thermochemical Tomography: why and how?

There is abundant complementary information available (e.g. satellite-based gravity, topography, geoid, etc)

Technology capabilities in seismology, mineral physics, geochemical analysis, geodynamics, potential fields, and computing power have reached the required stage of sophistication

<u>Take the next step: from parametric tomography to true</u> <u>thermochemical multi-observable tomography</u>

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Multi-Observable Thermochemical Tomography: why and how?

There is abundant complementary information available (e.g. satellite-based gravity, topography, geoid, etc)

Technology capabilities in seismology, mineral physics, geochemical analysis, geodynamics, potential fields, and computing power have reached the required stage of sophistication

This is not a methodological competition, but rather a collaborative step forward in methodology

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

CCFS

3) Multi-Observable Thermochemical Tomography: why and how?

The secret is SIMPLE! ... not to solve a very complicated problem every time we draw a new model, but every *n* models ... but check convergence!

For BWT we're using teleseismic data and a modified version of the Fast Marching Method (Rawlinson and Sambridge, 2005) to compute synthetic travel-time residuals

For the Stokes' flow we are testing a new kind of ultra-fast Stokes solvers based on FEM (w/ G. Rozza & A. Patera, MIT)

GEMO

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Multi-Observable Thermochemical Tomography: why and how?

Non-unique solutions in compositional space

Let's take a "target" composition at T=900°C and P=1.2 GPa

Modified from Afonso et al., 2013, JGR

Acceptable models (NA) without a priori information

CES

42

44

46

2.5

40

1.5

combined residual Vp, Vs, ρ

38

36

34

0.5

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

CCFS

3) Multi-Observable Thermochemical Tomography: why and how?

Non-unique solutions in compositional space

GEMO

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Multi-Observable Thermochemical Tomography: why and how?

A quick synthetic example:

<u>Shown recovered</u> model is the ML only CFS

Note the intrinsic variability associated with a unique model

Averaging the PDF would reduce the variability but affects the absolute amplitudes as well

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Multi-Observable Thermochemical Tomography: why and how?

Results for LAB geometry

CFS

Six models taken randomly from within 1 STD of the total posterior PDF

GEMO

Conclusions

Thermodynamically-constrained multi-observable probabilistic inversions are particularly well suited for providing reliable estimates of T and C in the upper mantle

This approach overcomes or minimizes most of the problems affecting more traditional inversion schemes when applied to the current problem

Thermochemical multi-observable tomography is a reality... a computationally expensive one, but we've got supercomputers!

Compositional heterogeneities in the sublithospheric mantle... what do they mean?

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

4) A synthetic example

Results for Mg#

Mean models of 8 random ensembles with 500 samples each taken from the total posterior

> Note the "persistent" features

Afonso et al., JGR (in review).

d)

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

4) A synthetic example

Results for bulk Al₂O₃

Mean models of 8 random ensembles with 500 samples each taken from the total posterior

Note the "persistent" features

Afonso et al., JGR (in review).

1) An interesting problem...

- What is the nature of the heterogeneity "observed" in the mantle?
- # Exploration, targeting systems (cf. McCuaig et al., Ore Geol. Rev., 2010)

GEMC

1) The main goals...

Why a *probabilistic* formalism?

Because the problem at hand is probabilistic in nature

Why multi-observable?

Different observables provide information on different aspects of the problem

Why internally consistent?

So you cannot tweak parameters as you please to make your model look better!!

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

5) Another synthetic example

- Our test have been performed with a teleseismic dataset composed of 70 distant sources (from the EVA Array, Victoria) with mostly *P* and *PKiKP* phases (and a few *Pp* and *ScP*)
- The receivers array (42 stations) is synthetic.

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Our (still preliminary) approach

The a priori petrological data

Over 3000 well studied mantle samples

3) How do we do it?

- a) Different observables are sensitive to different chemical-physical properties and depth ranges
- b) Each method is designed to specific chemical-physical properties or perturbations of these properties
- c) All thermophysical properties of interest ultimately depend on T, P, C

$$dG = V dP - S dT + \Sigma_i \mu_i dn_i$$

$$V = \left(\frac{\partial \mathcal{G}}{\partial P}\right)_T \quad V\alpha = -\left(\frac{\partial \mathcal{S}}{\partial P}\right)_T = \left(\frac{\partial^2 \mathcal{G}}{\partial P \partial T}\right) \quad C_P = -T\left(\frac{\partial^2 \mathcal{G}}{\partial T^2}\right)_P \quad c_{ijkl} = \frac{1}{V}\left(\frac{\partial^2 \mathcal{G}}{\partial S_{ij}S_{kl}}\right)_{P,T}$$

All related to the free energy of the system (in equilibrium)

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

CCFS

4) <u>Our method</u>

* There are <u>two main parts</u>

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

CCFS

GEMO

3) The main problems...

- i) Nonlinearity of the problem at hand
- ii) Thermodynamic modelling
- iii) Trade-off between T and C in wave speeds
- iv) T effect is much stronger than C effect (i.e. hard to isolate)

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

journal homepage: www.elsevier.com/locate/epsl

On the Vp/Vs–Mg# correlation in mantle peridotites: Implications for the identification of thermal and compositional anomalies in the upper mantle

Juan Carlos Afonso ^{a,*}, Giorgio Ranalli ^b, Manel Fernàndez ^c, William L. Griffin ^a, Suzanne Y. O'Reilly ^a, Ulrich Faul ^d

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

CCFS

4) <u>Our method</u>

* There are <u>two main parts</u>

http://www.eps.mq.edu.au/~jafonso/Software1.htm

GEMO

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

5) Preliminary results (synthetic cases)

Simulation run in a 90-CPU cluster for ~ 10 days

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) The main problems...

Non-unique solution in compositional space

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

5) Preliminary results (real case)

From Fullea et al., 2010, Lithos

An example...

the Atlantic-Mediterranean Transition Region

It's a highly complicated and interesting area

GEMO

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) How do we do it?

Afonso et al., in prep.

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) How do we do it?

Afonso et al., in prep.

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

5) Preliminary results

A comparison between the results of Fullea et al. (2010) and our new method

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

Thermodynamics Voltrac [%] Vol trac [%] Vol frac [%]

From Afonso and Schutt., Lithos (2012)

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

2) How do we do it?

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

2) Why bother with this?

- **#** Defining the LAB (cf. Jones et al., Lithos, 2010)
- # Exploration, targeting systems (cf. McCuaig et al., Ore Geol. Rev., 2010)
- # Geodynamic modeling (buoyancy from tomography models)
- # Lithospheric modeling and evolution (TopoEurope, crustal production trough time)
- # Craton stabilization... etc...etc...etc

GEMC

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Should it work?

Let's take a "target" composition at T=900 °C and P=1.2 GPa

Acceptable models (NA) without any a priori information

 MGB Med Geodynamics Group
 Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

 $\sigma(\mathbf{m}) = k\rho(\mathbf{m})L(\mathbf{m})$

GEMOC

$$\rho_{(\mathbf{d},\mathbf{m})} = const. \exp\left\{-\frac{1}{2}(\mathbf{d} - \mathbf{g}(\mathbf{m}))^{T}C_{t}^{-1}(\mathbf{d} - \mathbf{g}(\mathbf{m}))\right\}$$

CCFS

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

2) <u>How do we do it?</u>

Be careful!! the distribution can be biased!

The two peaks in our distributions could be an artifact of the sampling

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

3) Our approach ...so far

Thermochemical Tomography of the Lithosphere from Multi-Observable **Probabilistic Inversions**

3) Our approach ... so far

Let's look at a simple example...

Vp anomalies relative to horizontal average

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

4) A synthetic example

We created a 3D model with *LitMod3D* and used its predictions + noise as input data for the inversion

Afonso et al., JGR (in review).

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

4) A synthetic example

Examples of inputs (predictions + noise) used in the inversion

Thermochemical Tomography of the Lithosphere from Multi-Observable Probabilistic Inversions

4) A synthetic example

Results for LAB geometry

Mean models of 8 random ensembles with 500 samples each taken from the total posterior

> Note the "persistent" features

Afonso et al., JGR (in review).

40 150 160 170 180 LAB depth [km]