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Semoc 1) An interesting problem

o What is the nature of the heterogeneity “observed” in the mantle?
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What is the nature of the heterogeneity “observed” in the mantle?

Exploration, targeting systems (cf. McCuaig et al., Ore Geol. Rev., 2010)

Defining the LAB (cf. Jones et al., Lithos, 2010)

Geodynamic modeling (buoyancy from tomography models)

Lithospheric modeling and evolution (TopoEurope, crustal production

Dynamic topography (as we learned yesterday!!)

Craton stabilization... etc...efc.. .etc
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o Predictive and more explicative models at regional scales
(<~ 1000 x 1000 km) and depths < 600 km.

o How much can we really extract from high-resolution geophysical
datasets in terms of thermal and compositional anomalies?

o Realistic uncertainties affecting our predictions

We would like to work within an internally consistent, multi-observable,
probabilistic inverse framework

BENEFIT ANALYSIS.

BUT THAT WOULD
[REOU‘IRE A COST—]
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# Why a probabilistic formalism?

Because the problem at hand is probabilistic in nature

# Why multi-observable?

Different observables provide information on different aspects of the
problem

# Why internally consistent?

So you cannot tweak parameters as you please to make your model
look better!!
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Data Parametric
tomography
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# There is abundant complementary information available (e.g. satellite-based
gravity, topography, geoid, etc)

# Technology capabilities in seismology, mineral physics, geochemical analysis,
geodynamics, potential fields, and computing power have reached the required
stage of sophistication

Take the next step: from parametric tomoqraphy to true
thermochemical multi-observable tomoqgraphy
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Parametric Thermochemical
Data
tomography tomography

-8 - -

# There is abundant complementary information available (e.g. satellite-
gravity, topography, geoid, etc)

# Technology capabilities in seismology, mineral physics, geochemical analysis,
geodynamics, potential fields, and computing power have reached the required
stage of sophistication

# This is not a methodological competition, but rather a collaborative step
forward in methodology
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3) Multi-Observable Thermochemical Tomography: why and how?
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Body wave tomography and mantle flow... tough problems

high-resolution high-resolution
domain domain
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low-resolution
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The secret is SIMPLE! ... not to solve a very complicated problem every time we
draw a new model, but every n models ... but check convergence!

# For BWT we’re using teleseismic data and a modified version of the Fast Marching Method (Rawlinson
and Sambridge, 2005) to compute synthetic travel-time residuals

# For the Stokes’ flow we are testing a new kind of ultra-fast Stokes solvers based on FEM (w/ G. Rozza
& A. Patera, MIT)
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Non-unique solutions in compositional space

Let’s take a “target” composition at Acceptable models (NA) without a priori
T=900°C and P=1.2 GP information
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3) Multi-Observable Thermochemical Tomography: why and how?

Non-unique solutions in compositional space
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A quick synthetic example:

Recovered model True model

Shown recovered
model is the ML only

Note the intrinsic
variability associated
with a unique model

Averaging the PDF
would reduce the
variability but affects
the absolute
amplitudes as well
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Results for LAB geometry

Six models taken randomly from within 1 STD of the total posterior PDF
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Conclusions

# Thermodynamically-constrained multi-observable probabilistic
inversions are particularly well suited for providing reliable estimates of T
and C in the upper mantle

# This approach overcomes or minimizes most of the problems affecting
more traditional inversion schemes when applied to the current problem

# Thermochemical multi-observable tomography is a reality... a
computationally expensive one, but we’ve got supercomputers!

# Compositional heterogeneities in the sublithospheric mantle... what do
they mean?
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Results for Mg#

Mean models of 8
random ensembles

with 500 samples
each taken from the

total posterior

Note the
“persistent”
features

Afonso et al., JGR (in review).
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Results for bulk
Al203

¢
~—

Mean models of 8
random ensembles

with 500 samples
each taken from the

total posterior

Note the
“persistent”
features

Afonso et al., JGR (in review).
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1) An interesting problem...

o What is the nature of the heterogeneity “observed” in the mantle?

# Exploration, targeting systems (cf. McCuaig et al., Ore Geol. Rev., 2010)

Upper lithospheric domains
interpreted at 100 km depth,

projected to surface \

Darwin

100 km

= == = e I~ ————
2 e Ui 200 km

300 km

Rising fluid channeled into
sub-vertical conduits

Courtesy of GEMOC
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1) The main goals...

# Why a probabilistic formalism?

Because the problem at hand is probabilistic in nature

# Why multi-observable?

Different observables provide information on different aspects of the
problem

# Why internally consistent?

So you cannot tweak parameters as you please to make your model
look better!!
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5) Another synthetic example

seismic tomography from posterior
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Our test have been performed with a teleseismic dataset composed of 70 distant
sources (from the EVA Array, Victoria) with mostly P and PKiKP phases (and a few Pp

and ScP)

The receivers array (42 stations) is synthetic.
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The a priori petrological data
Over 3000 well studied mantle samples
Alz03 ' . . ‘ CaO

SiO2

Al203

Afonso et al., JGR (in review).
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a) Different observables are sensitive to different chemical-physical properties
and depth ranges

b) Each method is designed to specific chemical-physical properties or
perturbations of these properties

c) All thermophysical properties of interest ultimately dependon T, P, C

c S 2 2 | G
F:(BJ) Vg = — o — oY Cp=-—-T E f'z_.r.l:l':_( y )
aP ), ap ), \apPaT ar? /), V- A\3S8ySu/ pr

All related to the free energy of the system (in equilibrium)
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4) Our method

* There are two main parts
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3) The main problems...

i) Nonlinearity of the problem at hand

i) Thermodynamic modelling

ili) Trade-off between T and C in wave speeds

|v) T effect is much stronger than C effect (i.e. hard to isolate)

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

ol QEVIEDR journal homepage: www.elsevier.com/locate/epsl

On the Vp/Vs-Mg# correlation in mantle peridotites: Implications for the
identification of thermal and compositional anomalies in the upper mantle

Juan Carlos Afonso **, Giorgio Ranalli ®, Manel Fernandez €, William L. Griffin ?,
Suzanne Y. O'Reilly ¢ Ulrich Faul ¢
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* There are two main parts
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Preliminary results (synthetic cases)

Case 1: homogeneodSlicompositional field

I-\

Simulation
run in a 90-
CPU cluster

for ~ 10 days

Recovered solution

Compositional layers

"Real” model

Recovered solution
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Non-unique solution in compositional space
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5) Preliminary results (real case)

(m)

# An example...

the Atlantic-Mediterranean
Transition Region
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It’s a highly complicated and
interesting area
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First Part

(search & appraisal in 1D)
|

Input
* Dispersion curves * elevation
* 1D geoid anomaly * MT data
* xenolith data * surface heat flow
* Vp structure l

Nonlinear inversion

(Search for acceptable models
“‘column by column” and their
PDFs using NA)

!

Output
(PDFs for all parameters
\ in all individual columns) )

Afonso et al., in prep.
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| 3) How do we do it?

Second Part
(refinement in 3D)
|
( )
Input

* Dispersion curves ¥ elevation
* 3D geoid anomaly * MT data
* 3D gravity anomalies * surface heat flow
* xenolith data * output from part 1
*Vp structure *

Inversion/Forward
|

v v v
pure non-linear Bayesian
forward B LS inversion or MCMC
_ Qutput
[ owmmneey (Posterior PDF of the 3D compositional and

thermal structure of the lithosphere and
ksublithospheric upper mantle + uncertainties ) J

Afonso et al., in prep.
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5) Preliminary results

A comparison between the results of Fullea et al. (2010) and our new method
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Thermodynamics P=1.0GPa

T=1330°C
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= 2) Why bother with this?

# Defining the LAB (cf. Jones et al., Lithos, 2010)

# Exploration, targeting systems (cf. McCuaig et al., Ore Geol. Rev., 2010)

# Geodynamic modeling (buoyancy from tomography
models)

# Lithospheric modeling and evolution (TopoEurope, crustal production
trough time)

# Craton stabilization... etc...etc...etc
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3) Should it work?

Let’s take a “target” composition at T=900 °C and P=1.2 GPa

Acceptable models (NA) without any a priori information

502 vs MgO

32 34 36 38 40 42 44 46 48 32 34 36 38 40 42 44 46 48

40F
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T T
[ I T
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combined residual Vp, Vs,' P
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2) How do we do it?

Be careful!! the distribution can be biased!
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The two peaks in our distributions
could be an artifact of the sampling
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3) Our approach ...so far
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| 3) Our approach ...so far

Let’s look at a simple example...

True model

Vp anomalies relative to horizontal average

140° 142 144 146" 148°
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140° 142" 144°
| . :
-300 200 -100 0

m/s
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4) A synthetic example

We created a 3D model with LitMod3D and used its predictions + noise as input
data for the inversion

Columns Columns Columns
| 2 3 4 5 6 7 8 9 10 11 12 8

depleted
ublithospheric

mantle

Mg#=93.0

(- T SR - NV S S FTRNY

130 140 150 160 170 180 X . 350 355
LAB depth [km] Moho depth [km]
Domains LAB Moho

Afonso et al., JGR (in review).
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4) A synthetic example

Examples of inputs (predictions + noise) used in
the inversion

5
"Observed” geoid [m]

0.00 1.13 226 340 453
[ oa— |
ALLO, [Wt%]

B 22020
. . -120 -100 -80 -60 -40 -20 0 20
Afonso et al., JGR (in review).

"Observed” Bouguer anomaly [mGal]
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Results for LAB
geometry

Mean models of 8
random ensembles

with 500 samples
each taken from the

total posterior

Note the
“persistent”
features

Afonso et al., JGR (in review).

Probabilistic Inversions






