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Preamble

» Continental crust is the main host of mineral systems

* Processes of mineral systems formation involve the SCLM and
the asthenosphere

« The SCLM has thicknesses of 350 ~250 to 350 km, beneath Archaean
cratons and ~150 km beneath Phanerozoic terranes

 The SCLM may be eroded/partially destroyed by thermal events
(mantle plumes, delamination)

» Thickened SCLM and continental crust, may become gravitationally
unstable and delaminate into the asthenosphere

 The SCLM is subjected to metasomatism



Magmatic-hydrothermal mineral systems: e. g. porphyry, skarns, epithermal,

greisens, pegmatites, IOCG, REE in carbonatites and alkaline complexes

May form via partial melting of a metasomatised SCLM

The SCLM is subject to metasomatism either from subduction-derived
volatiles (H,O, CI, H,S, etc)

AND/OR

From volatiles (CO,, F and CI ) released from upwelling asthenospheric
melts or mantle plumes degassing



|dealised cross-section
of crust, SCLM

and mantle and
fluids/volatiles flow

Sublithospheric isotopically heterogenous mantle,
with pods of HIMU and EM1 material
HIMU y = 238U/294Pp ratio of an Earth reservoir

EM1 enriched mantle with intermediate
87 6 206 04 From Keith Bell and Tony Simonetti;
Sr/°Sr and low Pb/2%Pb 2010, Mineralogy and Petrology, v. 98
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Slab break-off; upwelling of asthenospheric mantle




GASCOYNE PROVINCE AND
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OROGEN

Distribution of selected mineral
systems along major structures
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Unaltered granite at right, flanked by strong foliation fabric with chloritic (1) and sericitic (2) alteration
along Ti Tree shear zone.




Areas of hydrothermal alteration
based on field observations

Gifford Creek Complex ] . _
combined with ASTER data analysis

\_Minnie Sprmgs

Field and petrographic observations
indicate phases of protracted
hydrothermal activity within regional
planar structures, particularly the Ti
Tree Shear Zone;

Importantly, there is evidence that
sericitic alteration OVERPRINTS
the foliation fabric in the shear zone

Argillic Mafic dyke

Quartz-sericite * Pegmatite locality

Potassic i Quartz vein

Fenitic




Minnie Ck
Cu-Mo-W prospect

Early disseminated moly

Late moly in quartz veinlets



Potassic and greisen
alteration + moly 1

STAGE 1
intrusion-related

Mo; Re-Os age c. 1770 Ma

\ B\

\% A\
STAGE 2 \
Ti Tree shear \
zone \ \

Dominantly illite-phengite

alteration S o D Quartz veins+

moly 2

STAGE 3 A Y
overprinting, gtz+moly
veins; Re-Os age c. 726Ma

Tentative sequence of events that led to the formation of the

Minnie Springs intrusion-related mineral systems
(Re-Os dating, Pirajno, Mao JW, Du A, unpublished)




Gifford Creek ferrocarbonatites

Pirajno and Gonzalez-Alvarez, GSWA Record
2013/12; and Pirajno et al. in prep



U-Pb age determination of apatite grains of Gifford Creek ferrocarbonatite
by LA-ICP-MS (Wei Chen and Antonio Simonetti, Notre Dame University)

Lower intercept at
1074 + 63 Ma;
MSWD = 0.17

“Uf”Pb average mean = 1075 + 31Ma; MSWD = 2.2

Pirajno et al. in prep
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Temporal association of carbonatites and LIPs,
based on age distribution in selected provinces
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Regional geological setting
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Q | Terrain
Northern Carnarvon / g

PILBARA

Hamersley Basin

Southern Carnarvon
Basin

Gascoyne
Complex

Bryah and
, Padbury Basins Yerrida Basin Ealgaahs?r? W

i Q
%\L /\(\ YILGARN CRATON




Stratigraphic setting and interpreted geometry of the Abra mineralisation
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Kiangi Creek Formation (fan-delta facies)

11te)

350 m 88 = ~ | \\ g adee ROV
- BlackZone 1 Creek

“Tan
Formation (fluvial facies)

700 m Irregully Formation

Pirajno et al. 2010, IAGOD Congress Ext Abs and Pirajno et al. GSWA Report In prep)



Distribution of mineral systems along the Quarztite Well shear zone on a
TMI (total magnetic intensity) image
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Possible genetic model for the Abra polymetallic breccia pipe

Input of modified
seawater carrying

Felsic dome 4 venting on
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Model based on Iberian Pyrite Belt (IPB); after Tornos (2006), OGR, v. 28,



Interpretation of seismic transect across the Gascoyne Province
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After and details in
Johnson SP etal. 2013, Aus JE S, v. 60



sittes Y 1) Pegmatites and

Quartz veins

950 Ma N

2) W skarns*
[

3) Intrusion-related
Pb-Cu-Mo

1770-975 Ma*

(*) calc-silicate alteration
(skarn) NOT associated
with carbonate rocks

Yinnetharra? -




Nardoo W skarns, Gascoyne Province

187873 epidote-rich band overprinting
a quartz polygonal aggregate

187869; garnet and epidote replacing polygonal
quartz assemblage

187867; scheelite crystals



SKARNS

(contact metasomatic; intrusion-carbonate rocks)

METASOMATIC

OO
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f ISOCHEMICAL \C RETROGRADE

Skarn mineral system and stages of its formation:
1) isochemical, hornfels;

2) metasomatism, exo- and endo-skarn;

3) Retrograde stage

After Einaudi et al. , 1981



The skarn alteration and associated
mineralisation (usually W, Mo-W, Fe-P)
affects rocks other than carbonates

This calc-silicate alteration has regional

extent and has no genetic relationship
with spatially associated granitoids
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Skarn and listwaenite belt

Lower Carboniferous
volcanic sedimentary rocks

Lower-middle Devonian
sedimentary rocks

Lower-middle Devonian
volcanic rocks

Silurian Hercynian Fe deposit
volcanic rocks granite P

Cambrian
metasedimentary rocks Normal fault I:I Au deposit

Neoproterozoic rocks

Altai orogen (NW China; Xinjiang Province),
part of the Central Asian Orogenic Belt

Listwaenite outcrop, gtz stockworks
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Abagong “’skarn™ (Fe-P) deposits (black lines in Google Earth image)




Abagong skarns

A) Massive wollastonite skarn
B) Garnet-magnetite skarn
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Skarn-type Hahaigang deposit of Gangdese metallogenic belt, unrelated to
carbonate rocks and older (c. 63 Ma) than spatially associated granitoids (c. 57 Ma)

After Xiaofeng Li et al. (in press) OGR
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Comparative cross-sections of southeastern and western Tibet at present day. Both sections
are true scale, from MFT across the Himalayan orogenic wedge (MHT: Main Himalayan
Thrust, STD: South Tibet Detachment), to Tibetan terranes (Lhasa and Qiangtang)

Simon L. Klemperer , B. Mack Kennedy, Siva R. Sastry, Yizhaq Makovsky , T. Harinarayana, Mary L. Leech
Earth and Planetary Science Letters Volume 366 2013 59 — 70
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Lithospheric mantle fertilisation due
to subduction metasomatism 50
Myrs ahead of the extensional
regime that produced the magmas
and associated mineral systems

Inset shows the Apuseni Mountains (AM),
the current location of the Adriatic
subduction front

From Caroline R. Harris , T. Pettke , C.A. Heinrich , E. Rosu, S. Woodland , B. Fry in Earth and Planetary Science
Letters Volume 366 2013 122 — 136 http://dx.doi.org/10.1016/j.epsl.2013.01.035
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S-wave tomographic images of the regional subsurface.
Red stars mark the location of the Apuseni Mountains.
Red lines on map views show location of depth sections
directly below maps; numbers on the lines correspond to
the distance across the transect in degrees

From Caroline R. Harris , T. Pettke , C.A. Heinrich , E. Rosu, S. Woodland ,
B. Fry in Earth and Planetary Science Letters Volume 366, 2013, 122 — 136
http://dx.doi.org/10.1016/j.epsl.2013.01.035



* Rifts tend to form around cratonic margins, usually following
weak zones of Proterozoic orogenic belts

* Crustal-scale ductile to brittle-ductile shear zones control the
location of rift structures, magma emplacement and ore

systems

* Long-lived shear zones and multiple ore-forming events

» Asthenospheric melts, rich in C, F, Cl and S penetrate the
overlying SCLM, causing extensive metasomatism

* Metasomatised SCLM partially melts producing alkaline and
carbonatitic magmas
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After Su BX et al., 2011, Gondwana Res, v. 20

Southern Margin of

Sequence of geodynamic
events leading to multiple
stages of metasomatism
of SCLM



Ph phonolite
C carbonatite
SG syenite, granite
N nephelinite

Model depicting the formation of rift-related magmas
(e. g. syenitic, carbonatites; A-type granites, rhyolites)
enriched in high-field-strength elements and the rare earths

After Martin, 2006, Lithos. V. 91
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Asthenospheric Modified after Sibson et al. , 1975,
Mantle Geos Soc London; 131: 653-559

Modified after Lindenfeld et al. ,
2012, Tectonophysics 566-562:
95-104
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Opposing model for the development of High-Ti and Low-Ti flood basalts of the 260 Ma
Emeishan large igneous province; SW China
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Magmatic-temporal evolution of the Siberian SCLM, stages 1 and 2
Stage 1: Low-T (950-1100 °C) metasomatism Stage 2: High-T (>1200 °C) metasomatism

> 360 Ma ~ 360 Ma
Eruption of Pre-SFB Kimberlite pipes

Garnet

Preservation of / \\/

original harzburgite
mantle profile / REE

Gamet 7 graphite ||l graphite

diamond

|
S
- \
ik |
<
£y =

o —
e -

Increasing thermal influence e
» Upwelling ~ __

I Plume
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Magmatic-temporal evolution of the Siberian SCLM, stages 3 and 4

Stage 3: Extensive basaltic metasomatism Stage 4: Local kimberlite metasomatism

~ 160 Ma
Eruption of Post-SFB Kimberlite pipes

Iong hved melt p
percolation /

— —

Erosion Ofth(’
\‘ lithosphere

Increasing thermal influence
\ \ |

{ Waning= > Asthenosphere

] ) After and by courtesy of Howarth et al. 2013, Lithos,
(SFB = Siberian flood basalts)

See also: Griffin et al. 2013, Nature Geoscience




Metallogenic trend = ~ 1000-2000 km

Polymetallic systems
Porphyry; LS epithermal Au,
Ni-Cu-PGE:; Fe-Ti-V Kimberlites, carbonatites

LIP

Zoned

Mafic-um
Translithopheric intrusions
| Strike-slip
Traps, sills Lamprophyre Alkaline intrusions,
Layered Dykes A-type
complexes

Fertile lithosphere, variably metasomatised

Pirajno, 2010, J Geodynamics
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