HOT CONTINENTAL TECTONICS:

DEFORMATION, FLOW, STRESS AND STRAIN

INSIGHTS FROM NUMERICAL EXPERIMENTS

PATRICE F. REY,

NICOLAS THÉBAUD, GUILLAUME DUCLAUX, NICOLAS FLAMENT CHRISTIAN TEYSSIER, DONNA L. WHITNEY GREG HOUSEMAN, NICOLAS COLTICE LOUIS MORESI, JULIAN GIORDANI, JOHN MANSOUR

Linking observations to kinematic and dynamic models

The University of Sydney

Wednesday, 6 November 13

"If at first the idea is not absurd, then there is no hope for it."

- Deformation of hot continents consequences for early Earth
- Early continents and plate tectonics

• Strain regimes in hot crusts

DEFORMATION OF HOT CONTINENTS

HOT?

Тмоно > **0.85 Т**мест

WHERE DO HOT CONTINENTS COME FROM?

• Continental geotherm through time

Continental geotherm through time

Viscous forces through time

Viscous forces through time

Wednesday, 6 November 13

Buoyancy of SCLM

Wednesday, 6 November 13

Earth's hypsometry through times: The Archean Flat Earth's Hypothesis

Late Archean Hypsometry: The Archean Water World Hypothesis

Late Archean Hypsometry: The Archean Water World Hypothesis

Late Archean Hypsometry: The Archean Water World Hypothesis

CONSEQUENCES FOR ECONOMIC GEOLOGY

CONSEQUENCES FOR ECONOMIC GEOLOGY

Precambrian Research 229 (2013) 93-104

Contents lists available at SciVerse ScienceDirect

Precambrian Research

journal homepage: www.elsevier.com/locate/precamres

Archean gravity-driven tectonics on hot and flooded continents: Controls on long-lived mineralised hydrothermal systems away from continental margins

N. Thébaud^{a,*}, P.F. Rey^b

CONSEQUENCES FOR EVERYONE ELSE

CONSEQUENCES FOR EVERYONE ELSE

CONSEQUENCES FOR EVERYONE ELSE

HOT CONTINENTS CHANGE EVERYTHING...

HOT CONTINENTS CHANGE EVERYTHING...

HYPSOMETRY & TECTONICS

HOT CONTINENTS CHANGE EVERYTHING...

EARLY CONTINENTS AND PLATE TECTONICS

STAGNANT LID

Convective stress Vield stress

MOBILE LID Convective stress > Yield stress

Moresi, Zhong & Gurnis, 2000

Fix foreland, melt with buoyancy

Convective system without and with continents ...

4200 km

3000 **Co=1** MPa, Bp = 0.015, η = 0.001 η^*

Plasticity (Co + μ . Pressure) . Weakening

Densíty = 3395 kg.m⁻³ α = 2.8 10⁻⁵ K⁻¹

Olívíne rheology: T, σ and ε dependent η (E:520 KJ.mol-1, n=3, 5e6 MPa⁻ⁿ.s⁻ⁿ) Ct Surf Temp. = 20 ℃

 $C_0 = 40 \text{ MPa}, \mu = 0.268$

Radiogenic Heat: 4.10-12 W.kg-1

Rayleigh nb (Conv. mtle): 106 - 107

Ct Basal Temp. = 1873 ℃

700 km

Open source codes: Ellipsis, Underworld

Coupled thermal-mechanical $\begin{array}{l} \rho \ (T, Metam.) \\ \eta \ (\sigma, \varepsilon, \dot{\varepsilon}, T) \end{array}$ Visco-plastic rheology with strain weakening Radiogenic heat, partial melting, eclogitization...

Depleted SCLM => Buoyant, dry and strong

Total thickness: 175 km

Total thickness: 175 km

Did early continents crank-start plate tectonics?

STRAIN REGIMES IN HOT CRUSTS

1.8 cm / yr

. 0 0 0 0 0 0 0 . 0 . 0 ۲ ۲ 0 ۲ 0 0 0 0 0 0 0 0 0 0 0 0

Time (Ma): 0.00

1.8 cm / yr

1.8 mm / yr

Time (Ma): 0.08

0 0

1.8 mm / yr

core complexes

Patrice F. Rey¹, Christian Teyssier², Seth C. Kruckenberg³, and Donna L. Whitney²

```
GEOLOGY, April 2011
```

Strain regime partitioning

Strain regimes in hot crusts:

Coeval contractional, extensional and shear fabrics develop in various parts of hot extending crusts.

During extension, hot rocks are advected through regions of contrasting "tectonic regimes".

Wednesday, 6 November 13